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Preface

The purpose of the thesis was to develop a model for the forced

transverse response of a mistuned disk that could predict rotating node

lines near a resonance. A stationary disk was used because the rotating

disk equation of motion has not been solved. The disk mistuning was

inKoduced by placing torsional springs at the disk outer edge but only

at the nodes of given modes. This selective location of the springs

keeps the analytic representation of the disk's response very simple.

Then, the boundary conditions were specified as having a spring

resistance only at these points, and another set of boundary conditions

were specified as free only at the points of maximum displacement on the

edge. This rather contrived form of imperfection was needed to keep the

eigenfunctions simple enough for a closed form solution to the response.

Thus, our mistuning model is not at all a true analytical representation

of an imperfect disk. It is really just a mathematical trick used to

introduce an asymmetry into the boundary conditions, and it is not

expected to be useful in the modeling of any particular real

imperfection. What it does, however, is allow a qualitative

understanding of how a real mistuned disk might respond to certain

loads. In this respect, it is better than a true model of an imperfect

disk. Because the mistuned mode shapes observed in experiments look

just like those of the eigenfunctions calculated in this thesis, I

believe that most forms of real mistuning will have responses similar to

the closed form results given herein (see 1:12)

Our mistuned disk response model cannot evaluate the response of a
n For

design. The actual mistuned resonant frequencies of the disk as well as n F

the modal fractions of critical damping must be provided for the model 5
ed C1

to be useful. Thus, the actual disk must exist, and experiments must be ton

performed to obtain these modal data before the model is applied.
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The characteristics of the mistuned stationary disk response also

appear to be attributable to a mistuned rotating disk. This is because

the mode shapes of the rotating disk are assumed to have a sinusoidal "

dependenze, which is the same form as that of the stationary disk, and

the stationary disk response model has the same characteristics for all

such mode shapes.

I would like to thank my wife for her patience and support during

this study. I would also like to thank Lt Col Bagley, one of the best

thesis advisors at AFIT, for his expertise, insight, and comprehensive

support. I am also indebted to Lt Col Baker of the Math Department for

his help in proving the self-adjointedness of the structural models used

in this thesis.

Jeffrey S. Turcotte
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Notati~n

a - the disk inner radius

b - the disk outer radius

D - the disk bending stiffness

is E - Young's Modulus

h - the disk thickness

v - Poisson's Ratio

W - the disk transverse deflection

p - the disk volumetric density

6 - the variation or Dirac Delta function

- the modal eigenvalue

n - the number of nodal diameters in the mode

m - the number of nodal circles in the mode

J.- the Bessel function of the first kind of order n

Yn - the Bessel function of the second kind of order n

In- the modified Bessel function of the first kind of order n

K, - the modified Bessel function of the second kind of order n

Am -H. - the eigenfunction coefficients

or - the angle where boundary condition is specified as free

es - the angle where the torsional springs are attached

H - the moment applied to the boundary (eq 6)

V - the transverse shear applied to the boundary (eq 9)

K - the torsional spring constant

IL - the eigenfunction of mode i
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Notation (Continued)

aj(r) - time dependent modal coefficients

f1(r) - the radial dependences of the eigenfunctions

qo - the magnitude of a point load

rq - the radial coordinate of a point load

eq - the angular coordinate of a stationary point load

w - the excitation frequency or angular velocity of a point load

Mi - the modal mass of mode 1

ki - the modal stiffness of mode I

wi - the natural frequency of mode I

- the modal fraction of critical damping of mode i

Oj - the modal phase angle between excitation and response

Ri(w) - the modal response amplitude of mode I

7 - the angular position of the node when r - 0

W blot - the excitation frequency required to excite a backward
rotating node point

- the excitation frequency required to excite a forward
rotating node point

0 - the rotating disk rotation speed

o r - the radial stress due to disk rotation

at - the hoop stress due to disk rotation
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Abstract.-

The objective of this thesis was to develop a simple model for the

forced response of a mistuned, center-clamped disk to help predict

previously unexplained experimental observations. Experiments have

shown that the response near a resonance can take the form of rotating

node lines (1:12). A simple model of a mistuned stationary disk was

developed and the transverse responses to both rotating point loads and

stationary point loads oscillating in time were determined. The disk

model uses torsional springs applied at points on the outer edge of a

stationary annular disk to mistune a given transverse vibration mode

such that the two resulting mistuned mode shapes are each described by

only four terms. The response of all modes other than the two mistuned

modes being examined was neglected, as only the behavior near a

resonance was considered.

The responses to both load types did indeed have rotating node

3lines near a resonance. The node lines were predicted to be slightly

distorted and rotating at a varying but average angular speed identical

to the circular frequency of excitation. In addition, it was predicted

that, if the modal response amplitudes are equal and the modal responsesa
are w/2 radians out of phase, a node point rotating at the constant

excitation speed would occur. The results also indicate that the node

lines can rotate in either direction due to a stationary load but only

backward due to a forward rotating load.

In a qualitative comparison, the resp^nse of a rotating disk to a

stationary point load was found to be similar to the stationary disk

response to a rotating load.

i
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A NEW MODEL FOR THE FORCED RESPONSE OF A MISTUNED DISK

I. Introduction

A perfect disk vibrating transversely can theoretically have

diametrical node lines moving through it or remaining stationary at an
arbitrary location, but a real disk can only have stationary node lines

or node lines moving at integer fractions of the excitation speed. The

difference is due to imperfections in the real disk that split any given

mode into two "mistuned" modes that each have their own stationary node

lines. The reason the node lines of the real disk are able to move is

that the disk response includes the response of both mistuned modes,

which may be out of phase.

Research in Fre Vibration

The stationary disk equation of motion and its solution are well

known; however such is not the case with the rotating disk. Southwell

published the natural frequencies of the certer-clamped annular plate in

1921 (2:139). In 1970, Mote published the eigenfunction coefficients

for the center-clamped plate (3:332-333). The rotating disk equation of

motion was studied by Lamb and Southwell in 1921 (4:276-280). They were

able to estimate the natural frequencies of the rotating disk but could

not solve the equation of motion in closed form. In 1972, Barasch and

Chen verified the Lamb and Southwell estimates using numerical

techniques; however, no one has yet determined the closed form solution

(5:1143).

Research in Forced Response

In 1957, Tobias and Arnold postulated that a node line could move

through a perfect stationary disk at the speed dG/dt - w/n , where W is

the excitation frequency and n is the number of nodal diameters in the

given mode; however, they made no such prediction for the mistuned disk



(6:672). Then, in 1981, Stange and MacBain reported the observation of

such a response in a mistuned disk (1:5). This observation led to

a further study and, eventually, to this thesis.

One experiment of Stange and MacBain involved exciting a

stationary, center-clamped, bladed disk with a stationary electromagnet-

* ic exciter. They excited the modes with two nodal diameters and no

*m nodal circles. The exciter was located midway between adjacent node

lines of the two mistuned modes so as to excite both modes equally. In

describing the response due to excitation between the two misttned

resonant frequencies, they wrote the following:

By exciting the disk at a frequency between these two
frequencies though, a point could be found at which the
dominant strain gages for each mode became equal in amplitude.
Double pulsed holograms taken at this point consistently showed
a 2N mode, but in different orientations with respect to the
disk, indicating that the mode was rotating. ... Switching the
laser into its strobed mode, it was found that by strobing the
disk at exactly the excitation frequency, the rotating 2N mode
could be made to appear stationary. Changing the phase of the
strobe resulted in a change in the orientation of the mode,
thus showing that the mode was rotating with respect to the
disk at the excitation frequency. (1:5)

The mistuning in this experiment was due only to the manufacturing

imperfections (it was not induced). These imperfections were small as

measured by the amount of mistuning, given by

(W2 - W)/w, - (266.5 Hz - 263.6 Hz)/263.6 Hz - 0.011 . The researchers

did not report any knowledge of the exact form of imperfection that

caused the mistuning, and it would be surprising if anyone could.

Because of the mathematical difficulties involved with imperfect

disks, most of the mistuned disk theoretical research has been

numerical. Imperfections tend to require infinite series representa-

tions of the eigenfunctions. Numerical methods do not, however, yield

much insight. Thus, an analytical approach is preferred in searching

for the cause of the rotating node lines. An analytical approach,

however, will require some care in the modeling of the mistuning and may

require a departure from the true modeling of a particular type of

imperfection.

2
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Available Mistuning Model

Narita and Leissa have shown that mistuning can be modeled by

introducing non-uniform boundary conditions (7:109). In the referenced

work, the authors apply rotatory springs to the simply-supported outer

* -boundary of a disk. This approach leads to an infinite series of Bessel

functions representation of the mode shapes. Furthermore, it is

*. apparent from the referenced work that such coupling is almost

inevitable when the mistuning is introduced through the arbitrary

addition of external mass or stiffness. This is indicated by the

movement of the mode node line off the disk center for one of the split

• imodes. Figure 1 is a sketch of one result given by Narita and Leissa

(7:108).

10.

Figure 1. Asymmetric Node Line of a Mistuned Disk
Mode: m - 0, n - 1 (Taken from 7:108)

3u



Such a node line cannot exist in a mode shape of the form

t(r) sin ni because the angular dependence of the displacement is

clearly not sinusoidal. In fact, the only node forms possible in the

above solution are nodal diameters and nodal circles. Thus, a more

refined mistuning model is needed.

A desirable model for the purpose of this thesis would be one that

introduces the imperfection without coupling the Bessel functions. Then

the mode shapes could be described by a few terms, and the response of

the two mistuned modes may possibly be added without concern about all

other orders of the Bessel functions. In light of the previous

research, the obvious place to introduce the imperfection is at the disk

boundary.

The type of imperfection must also be carefully considered. If a

mass imperfection is added at the boundary, the model may be more

accurate; however, the boundary condition will involve the eigenvalue,

and the resulting eigenvalue problem will not be self-adjoint. As a

direct result, the mode shapes become infinite series of eigenfunctions.

A stiffness imperfection is better in this sense, since springs at the

boundary do not usually result in an eigenvalue dependent boundary

condition.

4
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II. StationaX Dink Egation gf Hoion Ald Solutions

The equation of motion and corresponding boundary conditions of

the stationary annular plate are developed here using Hamilton's

Principle. The development neglects the effects of transverse shear and

rotatory inertia, and is therefore limited in application to thin plates

and the lower few resonant modes of vibration.

uatn 2f Motion

The plate strain and kinetic energy for the above mentioned

restrictions are given by Warburton (8:242). They are

-~ = - -rNrb(i+ -
2JoJo ar2  rar r 2 2

-2(1 -V) - I -w -- 2 rdrd9 1
and

1=p f21f,,(,W) 
2T-Fph - rdrdO(2

where

D- E

12(1 -v 2 )

E - Young's Modulus

h - the disk thickness

y - Poisson's Ratio

p - the disk volumetric density

W - the disk transverse deflection

a - the disk inner radius

b - the disk outer radius

[ 5A



-7,7 . 7 -7-77

The work done on the plate by a transverse load q is

W - qwrdrdO (3)

Hamilton's Principle states that

6 f (T-U+W)dt-O (4)

where the 6 refers to the variation.

Substituting equations 1, 2, and 3 into equation 4 and performing the

variation yields the equation of motion for the forced response of a

stationary disk,

DV4w+ph-W- q (5)

and the stationary disk boundary conditions

D 2 w w Va2W aw b

- r + 6 -0 (6)

-DI I43 I -oW )W (7)
[rar 2  r 2 )r r3 302 _ a0e

D [(2-v) tw +(2v- I) b2w I a
3 W 2(1-v))w 6w 2x0 (8)

r DrV2) r
2  

arO r a e3  r 3  560 (8

4)2 1,)O~ w (2-v) j3w_ (V -3) L)2 I Uj 
b

L D r-+ - 2 2 ) w =0 (9)

L3r3  Jr 2  r ar r )ra9 2  r 2  --2 j a

6



2 D ( 1 - v ) (I ! 2 W 2a b -o( 0I0 1lD( -Y) lW w0 (10)
2D~- r r2a r~ra) o 0

These boundary conditions require some interpretation. The

conditions expressed by equations 7 and 8 apply to a boundary where 9 is

constant. In the case of an annular disk, these equations are merely an

expression of the continuity of the disk in the 8 direction and do not

require application. The condition expressed by equation 10 applies

only to corners and is usually satisfied by solutions consistent with

the physical boundary conditions given by equations 6 and 9. The

remaining equations (6 and 9) are the moment and shear conditions on the

inner and outer circumferences. Equation 6 states that either the slope

of the transverse deflection or the moment must be specified at each

circumferential boundary. Equation 9 states that either the shear or

the transverse deflection must be specified at each circumferential

boundary. After selecting a set of boundary conditions, these equations

must be applied to the general solution of the equation of motion to

determine the specific solution to a given disk and its supports.

Solutionof he EuatLion 2f Moton

To determine the forced response of the continuous structure, the

solutions to the homogeneous equation must be found first. This is done

using the method of separation of variables. Then, the solution to the

non-homogeneous equation is assumed to be the sum of all of the

solutions to the homogeneous equation. Meirovitch calls this the

expansion theorem (9:143).

The homogeneous form of the stationary disk equation of motion is

D 4W+p (11)D7 w+ ph--0O Ii

at2

7



Assuming the time and spatial variables can be separated, let

w(r ,e,t)= (r ,0)a(t) (12)

Substituting this equation into eq 11 and separating variables yields

V4-ehW2 - 0 (13)
D

Letting phw /D - 4 yields

(V4 _ '64 )C(r , 0) - 0

or

(v2 + , 2 )(v 2 -_' 2)O(r,e) - 0 (14)

The solution to this equation is

i2, (r 9-[A,,J ,,(8 In r+ BmaY.a(6 MA mr ) + cnma a ( t ,,r)

+ Dmat Ka(,6mar )]sin nO + E[E MAJ ,(,f.r) + FmaY (ftmnr) + Gina 1,n(,6,mr)

+Hm, K,(,6.r)]cosnO (15)

where

P.- the mode eigenvalue

J,- the Bessel function of the first kind of order n

Y.- the Bessel function of the second kind of order n

In - the modified Bessel function of the first kind of order n

Kn - the modified Bessel function of the second kind of order n

A. - H. - the eigenfunction coefficients to be determined by applying
the boundary and initial conditions

and the am mode has m nodal circles and n nodal diameters.

L8



III. MistuninH odel

To obtain a simple expression for the stationary disk response, a

simple mistuning model must be used. Unfortunately, as mentioned

previously, such a model is unavailable in the literature. A simple

model can be found if the boundary conditions used to introduce the

imperfection are chosen carefully. Care should also be taken to ensure

the orthogonality of the mistuned modes so that the differential

equations of motion will not be coupled. The approach will be to apply

springs to the boundary such that eight boundary condition equations

result and yield two simply expressed mistuned modes for each mode of a

perfectly symmetric disk.

Consider the annular disk shown in figure 2. The disk is clamped

on the inner boundary (r - a) with torsional springs applied at certain

points on the outer boundary (r - b). Let the outer boundary be

specified as free at certain other points (b,OF), where OF - i/2n + 1i/n

(I - 0,1,2,...,2n - 1), but unspecified at all remaining points. Let

the springs be of equal stiffness K and be applied at all points (b,fs),

where 0s - Iv/n (I - 0,1,2, ...,2n - I). The number of springs required

is obviously dependent on the number of nodal diameters n in the mode

being mistuned. Figure 2 illustrates the case n - 2. Also consider in

this figure that the torsional spring mounts are massless and are free

to move transversely with the disk but not free to rotate with the disk.

The boundary conditions applied in this model will mistune the

disk because they create two different boundary condition equations for

the outer disk edge. One mode, having its node lines at the angles OF

will have to rotate against the torsional springs, since they are

located at its lines of peak displacement. Another mode will exist but

will not be affected by the springs because they are attached at itsIL
node lines.

9
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Figure 2. Clamped Annular Disk With Tors ional Springs
Applicable to Modes With n - 2

The boundary conditions are described by the following eight equations:

0 (a.0,) - 0 (16)

(17)

MkbOsy.dr

10



V(bo)-O (19)

(aF)-O (20)

, -,) o (21)

M(b,0,)- 0  
(22)

v(b'OF, - o (23)
where

M - the moment applied to the boundary (eq 6)

o V - the transverse shear applied to the boundary (eq 9)

K - the torsional spring constant

Notice that the above equations give the same result for all values of

the index i because each of these equations is of the form

fi(r) sin nf + f2(r) cos nD - 0 and cos nis - ±1, sin n97 - ±1,

cos n97 - 0, and sin n03 - 0 for all values of i. Observe also that

the boundary condition points of application are chosen so as to create

two independent sets of four equations. This can be seen by considering

equation 15 and observing that cos n*, - 0 and sin n8s - 0 . Thus,

equations 20-23 can be used to solve for the first four coefficients in

equation 15, and equations 16-19 can be used to solve for the last four

coefficients. This will result in two orthogonal modes of a single

order n, each described by only four Bessel functions. Thus, these

boundary conditions have been specifically chosen to produce separate

mode shapes that need only a few Bessel functions to describe them.

Stating the boundary conditions in this fashion leaves no means of

mathematically expressing the condition on the outer boundary except at

the points (b,eF) and (b,P,); however, it provides a set of eight

11



equations that can be used to solve the eigenvalue problem.

Selecting the boundary conditions from equations 6 and 9 and

substituting them into equations 16-23 and simplifying results in the

following eight equations:

cosno,= 0 (24)

{E n4 K (Y.)-...I(fmfta)-If(a I ft .~a) F a DY~~m

cosno,= 0 (25)

f [n(n-_1) 1 b

#,2nAb P.,%Ab

+EmkF Y,,MAb( - L nn I A2 ItPnfb) + i m

D2,, b " b

n- 1)1/.,6n~) IY1- t Kf(fimfb)+ .,,1~b

+ HM Fm I 16. b)n (la Y,~.1 ( 1 ) Kmfl Ift(8. b) +a) If (imnaJ

Hm , j'a K ( #m na)-Kf..,(/?,m n) ] cosrnOs O (26)

# 12

=~~~~~~ - f tlmmn mm~lmlwlmdlmmm lbtm



+ Fm(flJ(, b) - , (. 4 1 b

+ (I -v)ra2

- #2~ln im b 2 [(n 1 )( 6t tb) -6nb flffn )]

FMA(Y (1v, n 2 [ )-InY.(i mb)+~m~~(b

+(I -v v2  n J~1 ) (,6ab) - ,Ab Y (p b)C~ o (7
M b

Crm.~~SfflF (28)b bI. PIAb

2-[-f-2[) n - 1mi # a)] )+6 n b I.. K (6mnA> K

s nln FO (28)

n.



M.;

ARM {K(P.b)-(-1 ) J .ba(P b)+ PI.Ib K

2 b b 2 b~b

B (( - bi)]b
#2 2 2.'

~ARb

-c 1.(#...b) (l-) nL;n - .I_,.(..

- B,(,, ,, .( .,.b) - ,, , ( )

#2 .b ' 6.b K " ' B

sin nOF =0  (30)

+ (I -v) n (2
1  (,62 b2

+ B,,.nY.(,,,,b) -,,.bY.( b)

(1 -v) f 2 [ -1),( ~ b m'~t p ~ b 1

(1 - v)n

2 2

Equations 15 and 24-31 are used to construct the solution for the

free vibration of the mistunied plate shown in figure 2. They are

precisely the equations for two separate structures, namely the

clamped-sprung annular plate (represented by eqs 24-27) and the -

clamped-free annular plate (represented by eqs 28-31); and, they create l

two distinct modes, because the boundary conditions of one mode are

applied at the nodes of the other. That is, the two sets of points

where the boundary conditions are applied are nodes of the other

14n

D ( K mab) In b a-I~f i14b



mistuned disk mode shape. The specification of the outer boundary

condition only at these points is what allows the two different mode

shapes of the disk to be independent of each other. Equations 28-31 are

similar to those developed by Southwell (2:138-139).

As mentioned previously, since the eight characteristic equations

can be separated into two independent sets of four characteristic

equations, the eigenvalue and eigenfunction coefficients for each set of

equations can be solved for independent of the other eigenvalue and

eigenfunction coefficients. The two resulting eigenvalues will
6J

converge to a single eigenvalue in the limit of zero spring stiffness,

as is obvious when one compares equation 26 to equation 30 (note that

the other three equations in each set of four are identical). Thus, the

degree of mistuning in the model is directly related to the spring

stiffness, and a zero spring stiffness corresponds to a perfect disk.

Henceforth, the mode produced by the clamped-free boundary

conditions will be designated mode 1, or the sine mode. Alternately,

the mode produced by the clamped-sprung plate will be designated mode 2,

or the cosine mode. The two mode shapes are represented as

t;( r ,0) A [A , inn~ ,, r) + B Mn (,8,n. r) + Cn Inn (,6In.a r)

+ DmO(K.(/. r)]sinnO (32)

and

0~( r , 9) = Em J .a( /. m r) + F MA mMA 2 r + C ma! 16 MA m 2 r)( 3
+ H M K a(,, r? m r)cosn8

Convergenceo 2 Split Modes in a Tuned. t

In the modeling of the mistuning phenomenon, it is desirable to

show that the mistuning can be reduced as the amount of imperfection is

reduced. This can be shown by reducing the degree of imperfection in

the structure and observing the corresponding degree of difference

between the natural frequencies and mode shapes of the two mistuned "

modes. In the model developed in the previous section, the degree of

15



imperfection is a function of the spring constant K. An example problem

will illustrate the convergence of the two mistuned modes in the limit

of small K.

Equations 15 and 24-31 can be solved to yield the two mistuned

mode shapes and frequencies for each set of values m, n. To solve for

the eigenvalues and eigenfunction Loefficients, the matrix of the

coefficients of the boundary condition equations must be formed. This

matrix consists of terms such as a 11 - J. (f8a) and a12 - Y, (P1 a)

The matrix is a 4X4 for each of the two modes. Note that only one row

will be different in each of the two 4X4 matrices since only one

boundary condition is different. The elgenvalues for given values of a,

b, and n are determined first. This is done by estimating an eigenvalue

and calculating the determinant. If the determinant is not zero, then
e: the eigenvalue is incremented and the determinant re-calculated until

found to be approximately zero. The lowest eigenvalue for which the

determinant is zero corresponds to the m - 0 mode, and each successive

zero of the determinant corresponds to a successively higher value of m.

Once the eigenvalues are determined, the coefficients of the

eigenfunctions can be calculated. Since one coefficient will be

arbitrary, the first coefficient may be assigned the value of 1. This

will leave only three unknowns for each set of four equations. The

remaining coefficients may be determined by substituting the appropriate

eigenvalue into any three of the four equations and using any equation

solving technique. This approach leads to sine mode coefficients A.,

B.,, C, and D. that agree precisely with those published by Mote for

the clamped-free disk (although he uses a different normaliza-

tion)(3:332-333). The cosine mode coefficients E., F., Gm. and H. are

determined by the same process and the second 4X4 matrix. The two

modes, now fully determined, can be evaluated for their dependence on

the torsional spring constant K.

Consider the following example: let a/b - 0.1, m - 0, and n - 2

16I



The eigenvalue ratio P2/0 for this example is plotted in Figure 3 as a

function of the non-dimensional parameter KID, the ratio of rotatory

spring stiffness to disk bending stiffness.

1.3

1.2

1.0 -

0.9 114.11 11
10- 10 -4 10 "3 10 "1 10 " 1 10 10 ' 10' 10' 106 10' 10'

K/D

Figure 3. /02/01 VS.- KID for Mistuned Disk
a/b - 0.1 ; Mode: m - 0, n - 2

From the figure, it is clear that the eigenvalues converge in the

limit of K - 0, and it is clear from the discussion in the previous

section that the eigenfunction coefficients will converge as well, since

the boundary conditions for the two modes become identical as K

approaches zero.

Figure 3 also illustrates the flexibility of the model. For this

example, the percent of mistuning (-(W2 - WO)WO can be varied over a

range of 0 - 62.6% corresponding to the spring constant range K - 0

The maximum amount of mistuning available in the model is far greater

than the amount needed to model a typical manufactured disk. This is

fortunate because the mistuned mode shapes will differ markedly for

17



-77-

K/ID > 1, and the model's ability to correctly model generic

imperfections would become questionable.

Thus, the mistuning model developed in this section appears to be

both a reasonable and flexible model of the mistuning phenomenon in

general, although not an accurate model of any particular type of

imperfection. To confirm the model's precision, the model's ability to

predict rotating node lines observed experimentally in stationary

mistuned disks must be examined.
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IV. ta.aly DiskForce Response

The objective in developing the expression for the forced response

is to determine if it can have rotating node lines. The non-homogeneous

differential equations of motion will be developed and solved for the

disk response. Then the conditions necessary, if any, for the response

to have rotating node lines will be considered. A stationary point load

oscillating in time like that used in the experiment reported by Stange

and MacBain will be used first (1:5). Then a rotating point load will

be used because it is similar to a stationary point load exciting a

rotating disk.

Genea Forced Resonse

According to the expansion theorem, as referenced in Chapter II,

the forced response can be written as the sum of the solutions to the

homogeneous equation of motion (9:143). The expansion is expressed as

w(r ,0,t) = ta, )0,(r 0) (34)

where the W,'s are the eigenfunctions derived as solutions to the

homogeneous equation of motion, and the ai(t)'s are the time dependent

modal coefficients.

The response of a slightly mistuned disk excited near a resonance

can be approximated by the superposition of the responses of the two

modes associated with the two closely spaced resonant frequencies, as

long as the disk has no other resonant frequencies in this range. This

approximation is essential to simplifying the math associated with

calculating the forced response. Using this approximation, the disk

response can be expressed as follows:
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w(r,O,t) -aCt)1I(r)sinnO+ a 2(t)f 2(r)cosn (35)

where

and

f - EMJ ('0-. 2 r) + FiMjY A(1mA2 r)+ (;.1.(i,MA2 r)+ HI"K.(flmf 2 r)

Resoonse o A ta nay Load

A stationary point load, such as that used in the experiments

reported by Stange and MacBain (6:5), can be represented as follows:

q(r,9,t)-qo(0-0.)b(r-rq)sinwt (36)

where

q0- the magnitude of the load

rq- the radial coordinate of the load

6 - the Dirac Delta function

w - the frequency of the load

q - the angular coordinate of the load

Undampe Response. The undamped disk response is determined as

the solution to the non-homogeneous differential equation of motion.

The equation of motion for the disk, given by equation 5, was derived

assuming an undamped structure. Therefore, the assumed response, given

by equation 35, and the load, given by equation 36, can be substituted

into equation 5 and the time dependence solved for. Performing these

substitutions yields

D (a, (t)7 4[ f,(,) si n + a- 2(t )V 4[ 4 2 ,(r) cos, e]

+phid, (t)f, (r)sin nO + d 2 (t)f 2 (r)cos n]

2 qO 6(0-0,6(rr,)sinwt (37)
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IZ3±mi2o 2f Resonse. Multiplying equation 37 by each

mode and integrating both resulting equations over the domain of the

disk will result in two independent second order ordinary differential

equations. Their independence will be due to the orthogonality of the

mistuned modes. In essence, multiply by aj(t)/,(r)sinnO and

a2()/2(r)cosn8 and integrate to obtain

d,(t)+Wa,(t)-q~r f,(r.)sinnOqsinwt (38)

and

qr )cos nBsinwt (39)
2 2

where the modal masses and natural frequencies are given respectively by

m, - -ph f2(r)rdr (40)

and

I. I (41)
ph

To solve for the unknown modal coefficients, al(t) and, &2(t), a

solution of the form

a,(t)- Asinwt (42)

is assumed and then substituted into equations 38 and 39 to solve for

the amplitudes

A qor If (rq)sin nOq 
(43)

and
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qorq/ (rq)cos fl (44)
A2 " k2 (I _W 2 /W)

where the modal stiffnesses k, are given by

k, - miw? (45)

Substituting these results into equation 42 and the resulting form of

equation 42 into equation 35 yields

w(r,O,t) - ( -2 ;-.- f ,(r)sinnO

+ [2(r,)cos;Oq ]f 2 (r)cosne}qorqsinwt (46)

Behavior f Nodes. The undamped response to a stationary

load (eq. 46) does not predict a rotating node line. To see this,

consider a given radial coordinate and set the response equal to zero as

shown below:

f (r,)fi(ro)sinn q

+ 12(rQ)12 (ro)cosnO, co nO, 1 q~rqsinw-0 (7
k2 (w 2_w2/nodsinnO(47

where r0 - the radial coordinate of the node point.

(Note that there will be 2n node points, n being the number of nodal

diameters in the given mode.) Since the time dependence is not zero for

all time, the condition which must be satisfied is

L
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X s (48)

(w2/Wflsin nO..d. os2) O Aos . 0

where Z and Y are constants.

Solving for Gd. gives

0  d -tan- 2 / )X Jfunction of time (49)

For a given excitation frequency w, the node points will be stationary.

As the excitation frequency changes, the node points will move around

the disk, but they can only have a specific location for a given

excitation frequency w.

The itnto Between NoAe Lines and fgRPoints.
Equation 49 applies only to a given radial coordinate r0 , but, if the

mistuning is small, 0... will be approximately independent of r0. This

is because for all r0 in a slightly mistuned disk,

fl(ro) Oro) (50)

Thus, the node points will form a nearly straight node line in such

cases. Henceforth, when applying exact mathematical equations to a

specified radial coordinate r0 where a node is desired, the term "node

point" will be used; whereas, when referring only to the gross disk

behavior, the term "node line" will be used instead with the

understanding that the line is not necessarily straight.

Damped Response. Since the undamped disk did not yield rotating

node lines, a slightly more realistic model is needed. The equation of

motion for the damped disk cannot be readily derived; however, some

23



viscous modal damping can be easily added to the independent second

order equations 38 and 39 to get an idea of the possible effects of

damping. If the damping is light, the elgenfunctions obtained from the

undamped equation of motion will not be greatly affected, since they

must converge to the undamped form in the limit of zero damping. As it

turns out, the introduction of viscous damping into the equations of

motion does lead to the existence of rotating node lines.

Determination f Resonse. Recasting equa:ions 38 and 39

with viscous damping yields

d j t + o~ d ~ ) 0 2  q r /(51)

d I(t) + 2 Iw ,d,(t)+w ,a (t)- qorq,(r, )sin nOsin 5t
qil

and

2 wraf((),qoq/o q O q sin w t (52) -.

d 2 (t)+ 2 2 W 2 d 2 (t)0 2a2(t) -(rM72

where the , are the modal fractions of critical damping.

To solve these equations, a solution of the following form is

assumed:

a,(t) = Asin(wt - a,) (53)

Substituting this equation into equations 51 and 52 and solving gives

A I qorqf(rq)sinnOq (54)

k, [(I W2/w,.,1+ (2,,w/w )2]2

and

tan2a (55)tan -(A) 2/W2

Substituting equation 54 back into equation 53 yields
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qorq f (r.)sin no (6a si ( t- (6

k,[(Il - W,2/W 2)2 +(2 , w/w, 2'

Similarly for mode 2,

A 2 - qOrqf 2 (r,)cosnOQ (57)

tana.- 1-wA2/w2 (58)

and

a 2 (t) - qor,2(rq)cOsneq ,sin(cut- a 2 ) (59)

k2 [(- 2 ) (2 /  ) -

Using trigonometric identities, equations 56 and 59 can be

expressed as

a , qorqf,(rq)sinnOq ,(sinwtcosa,-coswtsina,) (60)

k, [(IW2W2) +(2 ,w,w 2

and

a,(t) - qorqf2(rq)cosnOq (sin w tcosa2 -coswA tsin a 2) (61)

k [(- /W2 ) 2 + (2 2 W/W 2)2]5

These results are then substituted into equation 35 to yield the

response given below:
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w(r ,O,t) qorqf(rq)sinnoq

k [(I -w/wfl)-(2-Iw/w, )2]5

[cosa (sin wtsin ne)-sin a, (coswtsin ne)] 1(r)

qorq/,(r,)cosnO,

k2 q 2 ( q COSfl 2

[cosa 2(sin wtcos nO) - sin a 2 (CosWtcosnO)1] 2 (r) (62)

Again, the response will be examined for the possibility of rotating

node lines.

Behavior S& N . The response of equation 62 can have

rotating node lines under certain conditions. If attention is again

restricted to a single radial coordinate r0 , as in the case of the

undamped disk, equation 62 can be expressed as

uw(rO,Ot)- R 1(w)[cosa,(sinwtsinnO)- sina ,(cosw tsin riO)l

+R 2(w)[cosa2(sinwtcosnO)- sin a2(cosWtcosno)1 (63)

where R,(w) and R2(w) are the modal response amplitudes given by

R -() qorqf/(rq)sinnO r (64)

k,[(l -w 2 /w2) 2 +(22w /u) )2]1/2!r °

and

R 2 (W) =q 0 r qI2 (rq) COSnO q _2r (65)
k2 [ - W2/w2)2 +(2 2 W/w 2 )211/ 2 J 2 O

Notice from equation 63 that if

-R,(w)cosa, =R 2(W)sina 2  (66)

and
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R 1(w)sin a1  R2 (W)cosa 2  (67)

then the response can be written as

w(ro,O,t) -R ,(w)[cosa ,(sin wtsin zO+ coswtcoszO)

+si a,(sin wtcosn - cosw tsinn6)] (68)

or, using another trigonometric identity,

w(ro,O,t) -R, (w)[cosa, cos(wt- no)+.smn a ,sin(wt -nrO)] (69)

Finally, this expression can be reduced to

w (r 0 ,0, t) -R ,(w ) smn(wt - n 0+y) (70)

where

ta n y = c ot a 1(71)

Equation 70 is an expression of the rotating node point being sought.

Observe that the node point must rotate at the angular speed

dO _w (72)

dt n

which is in the positive 8 direction. This case will be referred to as

the forward rotating node point.

If, instead of applying equations 66 and 67, the following

equations are applied,

R, (w)cosa, R 2 (W)sin a 2  (73)

R ,(w)sin a I-R 2 (W)cos a 2  (74)
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then the response can be written as

w(r,O,t)- R,(w) sin (wt+ nO+ y) (75)

This case will be referred to as the backward rotating node point

because

UA

dO wo (76)

dt n

Equation 70 (or 75) applies only to a given radial coordinate r0 ,

but, if the mistuning is small, the conditions expressed by equations 66

and 67 (or 73 and 74) will almost be satisfied for all radial

coordinates. Again, as in the case of the stationary node lines of the

undamped disk, the lines will not be exactly straight, but in this case

they are rotating. The nodes that satisfy equations 66 and 67 (or 73

and 74) will be referred to as rotating node points; however, the

corresponding gross response of the disk will be considered as having

rotating node lines even though they are not always lines in the strict

mathematical sense. Further consequences of approximate satisfaction of

equations 66 and 67 (or 73 and 74) are considered in the "Total Disk

Response" subsection.

Conditions Reguired fr R in Node Point. The

equations that must be satisfied for a rotating node point (eqs 66 & 67

or 73 & 74) are not very intuitive. To better understand the

requirements for rotating node points, the requirements should be

formulated in terms of the relationships between the two modal phase

angles and the two modal response amplitudes. Equations 66 and 67

represent two homogeneous equations in two unknowns. Non-trivial

solutions are possible only if the determinant of coefficients equals

zero. The matrix form of the equations is
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cosa, sin a 2 UR(w) f (77)

sina, -cosa 2  R 2 (w) 0

Taking the determinant, and setting it equal to zero yields

- cosa Icosa 2 -sinasina 2 = 0- -cos(aI - a 2) (78)

*or

11 (79)
a I - a 2 -- tki rt (k-0,1 ,2 ....)

The only possible solution to this equation when only two modes are used

to describe the response and w 2 > W1 is

it (80)"-
k-O or a,-a2-8

Substituting this solution back into equation 66 gives

-R 1(w)cosa-R2(W)sin ( at- -(0

or

RI(w)- R 2(W) (82)

On the other hand, if equations 73 and 74 are satisfied with

2 > wl, equation 78 still applies, but equation 82 becomes

RI(w)=-R 2(w) (83)

Thus the apparent requirements for a rotating node point are that the

response amplitudes of the two modes be equal in magnitude and that the

phase angles differ by 90 degrees.
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Ditni Between Node LIn Rotation Directions. It is

not clear from the previous subsection which way the node line will

rotate in a given case. Clearly both directions are possible, since the

response amplitudes RI(w) and R2(w) can be positive or negative

depending on the value of 8q. Thus, the node line rotation can be

reversed by shifting 0 qby r/2n radians. By the same logic, the case of

W2 < w, can be evaluated. In equation 80, the condition W2 > W1 was

assumed because, for the model developed in Chapter III and the notation

established therein, W2 2W1, with the equality being satisfied only for

K - 0. However, if the modes are not oriented as in the model of

Chapter III (in other words, if the higher frequency mode is not the

cosine mode) then the inequality W2 < w, applies and equation 80 becomes

(84)
a 2 -a1  2

1 and equation 83 becomes its partner equation in generating a forward

rotating node point. Yet, if equation 83 must be satisfied instead of

equation 82, the load angle 9q must be shifted by r/2n to preserve the

forward rotation direction. Therefore, if the modes are re-oriented

such that W2 < w, but the load angle is not shifted by r/2n then the

node line will rotate in the opposite direction. Thus, reversing the

orientation of the modes with respect to the load position has the same

effect on the node line rotation direction as applying applying

equations 73 and 74 instead of equations 66 and 67, since both cases

require a shift of w/2n in eq to meet the rotating node point

requirements.

An intuitive explanation may clarify the issue of node line

direction of rotation. Put simply, if some set of rotating node line

requirements is met, the node line will rotate in the direction of the

nearest node line of the mode with the higher natural frequency. It
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will do so because the mode with the higher natural frequency is not

lagging behind the load as much in time so the rotating node line must

rotate in the direction of its node line (i.e. in the direction of the

line of peak response of the mode with the lower natural frequency).

Henceforth, the inequality W2 > W1 will be assumed. Corresponding-

ly, the conditions of equations 66 and 67 and their corresponding phase

angle and response amplitude requirements (eqs 80 and 82) will be

considered to be the requirements for a rotating node point in the

stationary disk excited by a stationary load, as the consideration of

all possibilities would be too confusing.

Total Disk Response. Thus far, only the conditions required

for a rotating node point have been developed. The response of the rest

of the disk is not obvious at this point; however, as shown previously

(eq 50), if the mistuning is small, the total disk response can

approximate rotating node lines. This can be clarified by illustrating

how the node lines move through the disk due to the phase difference

between the two modal responses.

Considering equations 79, 81, and 50, one can imagine the

responses of the two individual modes as that illustrated in figure 4

for the mode n - 1, m - 0. They have approximately equal amplitude but

as the first reaches maximum positive displacement the second passes

through zero displacement. Observe from equations 60 and 61 that

ai(t) -0 when wt - ai+ kx (k - 0,1,2 .... ). At such a time, perfect

node lines must occur at all node lines of mode 1. At an instant later,

the displacement of mode 1 begins to decrease and the displacement of

mode 2 increases. The nodes must then retreat from the line of peak

response of mode 2 in the direction of negative displacement of mode 1.

This is how the node lines move. Although only one node point need move

at the angular speed w/n, the other node points must also move at the

same average speed and in the same direction. Indeed, if the two mode

shapes have equal amplitude at several radial coordinates, all node

points of such coordinates must rotate at equal angular speed.

31

I2



Ur

W W W3(t) "- 0 W(t) -W

t)a 1 aa(t) -0

W(t) ,, W2 (t) - W(t) ( Imx+W, a

a 1(t) -0 a 2 (t) - a 2,,

Figure 4. Node Line Rotation Due to Modal Phase Difference

Coordinates having unequal response amplitudes will move faster or

slower than the angular speed win, depending on which mode has the

greatest response at a given instant of time. Thus, if the rotating

node point requirements (eqs 76 & 78) are met, the total disk response

will consist of at least one node point rotating at the angular speed

w1n and all other points rotating alternately faster and then slower

than this speed.

The speed variations of each node point in the disk cause the node

line to be distorted whenever both coefficients al(t) and a2(t) are
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non-zero. In traversing the node line radially away from the rotating

node point at r0 , one must veer away from the nearest diameter of peak

response of the mode with the greatest response amplitude for the

particular radial coordinate (remember that the modal response

amplitudes are only equal at r0). Observe that for modes in which

n > 1, the shape of the node line will reverse directions as it moves

around the disk. This is because the nearest diameter of peak response

of the two modes exchange places with respect to the rotating node line

as it traverses a nodal diameter of either of the modes.

The insight provided by the intuitive look at the mistuned disk

response of this subsection leads one to wonder what might happen if the

rotating node point requirements (eqs 80 & 82) cannot be exactly met for

any radial coordinate r0 of the disk. Such a situation is the subject
M of the next subsection.

62prox mate SatsLAo2 Rotat Node Point Re uir

ments. Thus far it has been shown that the response of a mistuned disk

can have the form of rotating node lines under very stringent

mathematical conditions; however, these conditions are really more

stringent than necessary. It can now be shown that the requirements for

rotating node lines are actually much less stringent. This observation

would help one to believe the model is consistent with the rotating node

line response reported by Stange and MacBain, since it is unlikely that

the requirements of both equation 780 and equation 82 were met in their

experiments. Since the mistuning in their experiment was small, it is

not likely that equation 80 could have been satisfied, and it would be

encouraging to know that it didn't need to be satisfied. It should also

be noted that the disk used in their experiments was probably not

viscously damped, since this is an additional reason for the predictions

made in this thesis to differ from experimental results.

In the previous subsection, it was found that points other than

those at the specified radial coordinate r0 can also move around the

disk at an angular speed similar to w/n leads to an important
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consideration. Suppose the modal damping fractions j are such that

equation 80 cannot be satisfied for any radial coordinate or excitation

frequency. Such a condition would not guarantee that rotating node 7A
lines could not be observed experimentally. This is clear from the

discussion of the previous subsection because only a finite number of

coordinates can satisfy the requirements of equations 80 and 82, and yet

all node points on the disk can move at approximately the same angular

speed. Thus, the requirements for experimental observation of rotating

node lines must be considerably less stringent than those of equations

80 and 82.

Obviously, if equations 80 and 82 are not satisfied there will not

be a node point rotating at exactly w/n, but, for practical purposes,

the exact speed of the node point is not critical. A perfect node line

must still occur when either mode reaches a point of zero response, and

another perfect node line must occur at another location when the other

mode reaches its time of zero response. The only way the node lines can

avoid moving is for the two modes to be exactly in phase. Thus, it is

really only the shape of the rotating node line that is affected by the

degree to which equations 80 and 82 are satisfied (or that non-viscous

damping is present). Certainly, as the disk falls further away from

satisfying these equations, there will come a point where the node line

will be too distorted to observe. The condition of approximate

satisfaction of equations 80 and 82 will be addressed further in example

problem *4. At this point, the final development of the rotating node

point requirements must be addressed.

sn Modal Dn.g. The response amplitude and

phase difference requirements for rotating node lines of equations 80

and 82 can be precisely met under specific conditions. These conditions

can be formulated in terms of the modal fractions of critical damping j

and the excitation frequency w. This will help the designer or

L
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experimenter to determine whether or not a given disk can respond with a

rotating node lines and, if it can, at what excitation frequency the

rotating node lines will occur.

Treating the damping values rL as unknowns, the requirements for a

rotating node point consist of two equations in three unknowns (rl, 2,

and w); thus, one unknown must be specified. If, for instance, one

damping value is specified, the remaining unknowns can be solved for.

The explicit equations for the remaining unknowns are derived below.

Implicit in equation 55 are the following equalities:

sin a= w (85)[( -o/.,,1+(2tw/o )2 .
and

1 -w 2/W
cosa - (86)

[(1-W 2 /iW )2 +(2IW/W)2] 2

or

[I- /2W2)2 +(2 ,w/ )2]2 2 1w/w i- /W 2  (87)
Ssina, Cosa,

The left hand side of this equation is found in the denominator of

both response amplitudes (eqs 64 & 65); therefore, this equation can be

substituted into equation 61 to yield

. ,(r,)f,(ro)smnnOq 2 12(r-) 2 (ro)cosnO 2 (88)

k,(I -W2/oW) -c° a" k2(2fl/W2) si 2 a2

From equation 80, the following equation is formed:

sin2a2 COS 2 (89)
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Applying this to equation 82 yields

[f,(r)/I,(ro)sinno, ,f 2(r)/ 2 (ro)cosno. 2 (90)-

k1( - W2 /(U ) 4. k2 (2C2"W/ 2 ) sini a2 -O

Since sin 02 0 0, we must have

. 1(ro)f I(ro)sin no, I2(r,)12(rO)cosnG,] 0  (91)

L k, k 2 (2 2 w/W 2 )

Solving this quadratic equation gives

/,(r q) 1II(r o) 2 k 2tannoq
Ira f12(rq)/ 2 (ro)m I w2

I +(rO)t2 k 2 tannq 2) 2 2 (92)

f12(r )12(ro)m I W 2

Thus, the excitation frequency wf. necessary for a forward rotating

node point, can be solved for if r2 is known. On the other hand, if _

is known,

W raf (rq)f2(ro) ,k, _
(at(r) f (ro)tarnO 2m2 W I

_ 2(rq)_2(r_)_ _1_ _2]2 (93)fj(rq)f(ro)tannOqrM2W) _2

In equations 92 and 93, the positive root must be taken to obtain the

desired positive frequency.
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After one modal fraction of critical damping is assumed and the

required excitation frequency solved for, the other modal damping value

can be determined by rearranging equation 87. This yields

(94)
tan a1

if C. is assumed and

1(W~w~(95)
t2 tana2

if C, is assumed.

If the modal damping of both modes are assumed to be equal,

equations 92 and 93 can be set equal and the damping solved for. The

resulting expression is

i

k r OD 1 02) 2tan 0.12 964[ , 2 +w22 1( ] + k/o (rJ--r
01 2 (k2o, tann i(rf r) )0 klw2 /2(r q12(r,) )

The excitation frequency wfm corresponding to this fraction of critical

damping can be calculated using either equation 92 or equation 93.

Dmping Limits. The amount of modal damping cannot exceed

certain limits if the rotating node point requirements (eqs 80 & 82) are

to be satisfied. This limitation is due to the phase requirement of

equation 80. If the modal damping is too high relative to the amount of

mistuning, the required phase difference cannot be achieved for any

excitation frequency. The maximum values that the fractions of critical

damping can take on can be calculated, even though the equal damping as

calculated in equation 96 may be more useful.
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The precise limitations on the modal fractions of critical damping

can be determined by considering that the phase angle of either of the

two modes is 90 degrees at the natural frequency. That is,

al,(w ) - w/2 and a2(w2) - ./2 Thus, a rotating node point can only

occur at excitation frequencies between the two natural frequencies.

Therefore, the maximum fractions of critical damping can be determined

by setting equations 92 and 93 equal to the corresponding natural

frequencies. This results in the following equations:

- m2 '(r,)/,(ro)tann (w2 (97)

2mx2M2/j(rq)fj(rO)tannflq( 2.i~) (

If either of the fractions of critical damping exceeds these values, the

other fraction cannot be made small enough to satisfy the phase

requirement of equation 80. Notice, though, that if one fraction takes

on its maximum value the other fraction must approach zero. Since one

would normally expect the two modal damping values to be about equal,

the maximum damping values given by equations 97 and 98 may not be very

useful.

Ex= e Problem g. An example problem will help to

illustrate the equations developed thus far. Consider the following

parameters for a steel disk:
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b - 0.13 meters K - 24.0 N-meters/Radian

a - 0.013 meters r, - 0.05 meters -

v - 0.3 Oq w x/8 radians

h - 0.003175 miters n - 2

E- 206,844 MPa a- 0

p - 7800 kL/cu meter r o - 0.05 meters

Applying the methods described in Chapter III yields the following data:

#021 - 18.24018461 8022 - 18.32274608

Ao 2 - 1.0 E 0 2 - 1.0

B02 - 0.02630958 F0 2 - 0.02640427

C 0 2 - 0.20438468 G0 2 - 0.19803424

D 0 2 - 0.01698596 H 0 2 - 0.01704926

k, =-2.68107X k 2 -2.72086X10 s

m, -0.09894148 m 2 - 0.09861232

, -1646.13 rad/s w 2 - 1661.07 rad/s

The radial dependences of the mode shapes are plotted in figure 5. It

is clear from this figure and from the split natural frequencies that

the mistuning is small. This justifies the ability of the mistuning

model to model small imperfections without drastically affecting the

mode shapes.
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Figure 5. Example Problem #1, Mistuned Radial Mode Shapes
K - 24.0; a/b - 0.1; Mode: m - 0, n - 2

Next, the condition of equal modal damping is calculated using

equations 96 and 92. The results are

1I 2 O.0045i6 w 1653.59

Using equations 97 and 98, the damping limits are calculated.

They are

xO 0.009037 (2. =0.009028

If either of the fractions of critical damping are higher than these

values, a node point rotating at constant angular speed cannot occur at

the specified radial coordinate r0 regardless of how small the other

damping value becomes. To demonstrate this, figure 6 plots the phase

angles for the damping fractions ," 2 - 0.01
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Figure 6. Example Problem #1, Modal Phase Angles
l -0.01, - 0.01

Equation 80, the phase requirement for a rotating node point, is clearly

never satisfied for the damping value specified here; therefore, a node

point rotating at the constant frequency win cannot occur for the

specified radial coordinate r0.

Next, one fraction of critical damping is specified and the other

parameters are calculated using equations 93 and 95. Letting ti-0.00400

yields

2 = 0.00503 w =1654.44

The modal response amplitudes for these parameters are plotted in Figure

7, and the phase angles are plotted in Figure 8.

41



0.20

/ 5%

/ 5%

0.15
/\

/\

I

040.10

0.05

DASHED UNE - MODE 1
SOJO LINE -, WOE2

0.00 , . . . . . . . . . . . . . . . . . .J

1640 &65W 1660 1670
GJ (RADLANS/SEC)

Figure 7. Example Problem #1, Response Amplitudes
" 0.00400, !' " 0.00503, Rotating Node Point
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Figure 8. Example Problem #1, Modal Phase Angles
"0.00400, 2 - 0.00503, Rotating Node Point-
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These figures show that the conditions required for a rotating node

point (eqs 80 & 82) are indeed satisfied at the indicated frequency

(1654.44 rad/sec).

The shape of the rotating node lines can be plotted by varying the

time and radius in equation 62. If this is done using the modal damping

values and excitation frequency calculated earlier, the node line motion

shown in figure 9 results. In this figure, the node line distortion is

greatly exaggerated. Notice that when the node line- cross the natural

node lines of each mode, they become straight. At such times, the

displacement of the other mode is zero. The times t that this will

occur can be determined by setting 0 equal to the angle of a desired

modal nodal diameter and setting the response of equation 70 equal to

zero (this will place the node point at the modal nodal diameter and the

time can be determined as t - (ni - )/.

Wt--y 3 nOWt'-+ Wt=-+t --7 Ot-y*-

-.8994 4 2 4

-1.685 -2.470 -3.256

Figure 9. Example Problem *1, Rotating Node Lines
Mode: m - 0, n - 2

Figure 10 is an accurate plot of the node line shape at its maximum

curvature and magnified 100 times along the Y-axis. If it was plotted

to scale or even magnified 10 times, it would appear as a straight line.

Note that the large curvature at the disk outer edge is expected because
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the mode 2 mode shape is bent downward at the edge by the torsional

springs. In essence, the amount of curvature is a function of the

difference between the mode shapes along the radial direction.

z -0.07

Uo

-0.15
0I-

25 -0.3 .. . . .
0.01 0.03 0.05 0.07 0.09 0. 11 0.13

a 'r (METERS) b

Figure 10. Example Problem #1, Node Line Shape Magnified 100 Times
Mode: m - 0, n - 2 ; K - 24.0

Exampe Problem 12. The node line shape can be plotted for other

modes as well. By choosing a different mode, the effects of mistuning

on different modes can also be explored. Consider using all of the same

parameters used in example #1 except for the number of nodal circles in

3 the mode. Instead of m - 0, let m - 3. The resulting radial mode

shapes are plotted in figure 11. The mistuning is so slight that the

mode shapes are virtually identical. The modal data for these modes are

as follows:a

-23 - 99.27284419 .#232 -99.29857727

A02 - 1.0 E02 -1.0

B 0 2 - 0.56873390 F0 2 - 0.56903183

C02 --.00000492 G02 - -.00000489

D02 -0.54019380 H0 2 -0,54058599

k1 "9.39254X 107 k 2 - 9.40461X 107

m1 -0.03950465 m 2 -0.03951444

W, - 48760.427 rad/s W 2 - 48785.709 rad/s
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Figure 11. Example Problem #2, Mistuned Radial Mode Shapes
a/b - 0.1 ; Mode: m - 3, n - 2

Note that the percent of mistuning (=(w2 - wl)/lw) is much smaller in

this mode for the same torsional spring constant. This makes good

intuitive sense because one would expect the boundary condition to have

less influence on the disk as a whole for modes that have more nodal

diameters or more nodal circles. The boundary imperfection becomes more

and more isolated from most of the disk by the additional modal node

forms, and thus zone of the disk being influenced by the imperfection

becomes smaller. The main effect of reduced mistuning is that the modal

fractions of critical damping must be smaller if equation 80 is to be

satisfied. This can be easily shown by assuming one damping value and

calculating what the other must be.
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To plot the modal phase angles and node line shape, one fraction

of critical damping must again be specified. If C, 0. 00025, then

equations 93 and 95 yield

2 - .000268 W fta m48773.35

The modal phase angles are plotted in figure 12, and the rotating node

line is plotted in figure 13 during a time of maximum curvature. The

Y-axis magnification in this figure is 10.

[.0

2.0 ---

/2

1.0

S~DAtSHED UNE uMODE I

Figre12 EamleProblem #2, Modal Phae.nles
1 0.000250, C2 - 0.000268, Rotating Node Point
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Figure 13. Example Problem #2, Node Line Shape Magnified 10 Times
Mode: m - 3, n - 2; K - 24.0

Observe that the distortions of the node line occur at the nodal circles

of the mode. These distortions may be attributed to numerical

inaccuracy in the region of a nodal circle. The angular position of the

node line cannot be accurately determined in a nodal region of the mode

shape. These distortions, in any case, would not be apparent to the

experimental observer, since they are near the nodal circles of the

mode. Because of the suspected numerical problem with this node line,

another example will be considered without nodal circles.

Example Proble gj. Now consider using all of the same

parameters used in example #1 except for the number of nodal diameters

in the mode. Instead of n - 2, let n - 4. The resulting radial mode

shapes are plotted in figure 14.

J
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Figure 14. Example Problem #3, Mistuned Radial Node Shapes
a/b - 0.1; Node: a - 0, n - 4

The modal data for these modes are as follows:

840 1 - 35.94503247 6402 -35.98051624

A02 - 1.0 E02 -1.0

B02 - .000021536 F0 2 - .000021649

C 0 2 -0.04279918 C 0 2 -0.04216615

D02 -0.00001409 H 02 -0.00001416

k1 k -0.19118Xl07  k 2 0.19179X10 7

m, -0.04678186 m 2 -0.04674543

w, -6392.700 rad/s w 2 -6405.328 rad/s
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Letting , " 0.00009 yields

2 =0.001074 Ira =6399.54

The shape of the rotating node line is plotted in figure 15 magnified

100 times.

0

o0.0 0.03 0.05 0.07 0.09 0.11 0.13
a r (METERS) b

Figure 15. Example Problem #3, Node Line Shape Magnified 100 Times
Mode: m - 0, n - 4 ; K - 24.0

This node line looks more like it is expected to. The curvature is less

than that of example #1, because the percent mistuning is smaller. The

mistuning is smaller because of the greater number of nodal diameters in

the mistuned modes. Again, the greatest curvature occurs where the two

mode shapes differ the most - at the outer boundary. One more node line

will be plotted later, in example #8, as a more important idea must now

be explored.

ahProblem I_. As an example of what might happen if

equations 80 and 82 are not satisfied, consider the following changes to

example #1: let - 0.015 and 2 0.017 . These values are

considerably greater than the maximum values allowed if a node point

rotating at the constant frequency /n is desired; however, the previous

discussion about approximate satisfaction of the rotating node point

equations suggests that a rotating node line will still occur in some

shape or form. The phase requirement cannot be met with these damping
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values as is clear from figure 5; however, the modal responses must be

equal for some excitation frequency. Solving equation 82 for this

frequency and calculating the corresponding phase angles yields

c.- 1659.481 rad/sec a =2.06459 radians a 2  1 1 .51449 radians

Note that the phase requirement (eq. 80) is far from being satisfied.

If the frequency calculated above is substituted into equation 62,

the disk response can be plotted for any time, radius, or angle. By

plotting the total disk response as a function of r and 0, the shape of

the disk can be observed. In this way, one can compare more than just

the position of the node lines - one can compare the entire disk shape.

This will assist the experimenter in comparing his observations to the

* model predictions. The response is plotted in figures 16-18 for three

different times with radius as a parameter.

0.2 -

r-.13

I.
-0 s.04

-0.0

0.0 1.0 2.0 3.O 4.0 5.0 6.0 7.0
1 (RADIANS)

Figure 16. Example Problem #4, Disk Response Vs. Theta
t - -0.980 milliseconds; j - 0.015, 2 " 0.017
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Figure 17. Example Problem #4, Disk Response Vs. Theta
r -0.897 milliseconds; -0.015, 2 -0.017

0.3 ru13

r-10

0.1

-0.1

1. 23 .34. 536.3 7.3
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Figure 18. Example Problem #4, Disk Response Vs. Theta
-0.522 milliseconds; -0.015, C2 - 0.017
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These figures show that the node line is virtually straight and

that the total disk response has the same shape as that of a single

mode. Thus, even when only equation 82 is satisfied, the disk has a

rotating node lines and has the same general shape as that of the tuned

mode shape. Observe however that the amplitude of the displacement

changes as the node line moves around the disk. Since equation 80 is

not satisfied, the modes need not add up to the same amplitude for all

times. In addition, the node line cannot rotate at the constant speed

w/n because there is not enough phase shift between the response of the

two modes. The actual node line shape is plotted in figure 19. As one

might expect because of the percent of mistuning (the same as for

example #1), it looks much like the node line of example #1.

-0.020z
0
P -0.100

0
L -0.180 1IJ ~ lI If i l Il11 1 11 l. 0'.1,l1l111l~ l ll l II | II i1 1

O 0.01 0.03 0.05 0.07 0.09 0.11 0.13
a r (METERS) b

Figure 19. Example Problem #4, Node Line Shape Magnified 100 Times
Mode: m - 0, n - 2 ; K - 24.0

The position of the node line is plotted versus time in figure 20.

Note that it moves faster and then slower than the speed w/n but must

have an average angular speed equal to w/n because each mode must pass

through zero response twice per cycle of excitation.

52



6

r4- 10"- -Z n

0.01

02-

Z0

t (MILLSECONDS)

Figure 20. Example Problem #4, Node Line Position Vs. Time
j - 0.015, C2"- 0.017; Mode: m - 0, n - 2

A more direct observation about the amplitudes in figures 17 and

18 can now be made. Observe that the response of figure 17 occurs at a

time when the node line is moving fast. This is a time when the energy

of the disk is mostly kinetic, and, therefore, the strain energy

(deformation) of both modes is small. In contrast, the response of

figure 18 occurs when the disk energy is mostly potential, and,

therefore the response of both modes is large. This explains why the

total response in figure 17 is smaller than that in figure 18, as the

sum of two small modal responses must be smaller than the sum of two

large modal responses. Thus, when the node line rotates slowly, the

response is large and vice-versa. The response in figure 16 occurs when

the response of mode 2 is zero; thus, its amplitude represents the mean.
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The stationary mistuned disk response to a stationary oscillating

load has now been extensively analyzed. The response was determined as

were the conditions required for rotating node lines to occur. The

conditions required for a node point rotating at the constant angular

-peed w1n are that the modal response amplitudes be equal in magnitude,

that the modal responses be shifted in phase by x/2 radians, and,

obviously, that the modes be damped to cause this phase shift. It was

also shown that as long as there is some phase difference between the

modal responses and the modal response amplitudes are equal the node

lines will rotate albeit not at the constant speed w/n. Most

importantly, it was shown that analytic models can predict the existence

of rotating node lines observed experimentally by Stange and MacBain.

The stationary load has provided excellent insight into the

response of a mistuned disk; however, most aerospace applications

involve rotating disks. The next step to be taken is to simulate a

rotating disk by rotating a load around a stationary disk.

Response A o Rotating Load

A point load rotating around a stationary disk at constant angular

speed can be used as a model for a rotating disk excited by a stationary

point load. The resonant frequencies of the rotating disk are known to

be higher than those of the stationary disk but the mode shapes are

similar. The response of the stationary disk to a rotating load will be

determined and later considered as a model of the rotating disk

response. The conditions required to form rotating node lines will also

be determined. These conditions should be slightly different from those

of the stationary load case because the two mistuned modes are

automatically excited out of phase by the rotating load.

A rotating load of constant amplitude, angular velocity, and

radial position can be described by the following expression:

q(r,O,t) - qo6(O-wt)6(r-rq) (99)
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where

q0 - the magnitude of the load

r. - the radial coordinate of the load

6 - the Dirac Delta Function

- the angular speed of the load

UndMed Resonse. Incorporation of the rotating load into the

equations of motion for the stationary load only affects the force side.

Equations 38 and 39 become

d(tl+u 2 aI(t) - qori (rq)sinnwt (100)

UM

and

d2( t)+ uJ a2( t)-O qor, ( r )cosnwt(0)
M 2

A solution of the form

a, (t)- A, sinwt (102)

is again assumed for mode 1; however, a different solution is assumed

for mode 2. It is

a 2 (t)- A 2 cos wt (103)

Different solution forms for the two modes are assumed because the two

mistuned modes are excited out of phase by the rotating load. This
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should lead to a change in the conditions required to excite a rotating

node point, because the phase of the response is critical to exciting

such a response (recall eq 80).

oterminatifo gf Response. Solving the independent differ-

ential equations leads to the response, given by

o- rq,(r.) (r)sinnOsinrt

w(,,,t)-k(1 2U 2 /W

+ qorqf2( rq)(14
(I .o,2W, )f2(r)cosnOcosnwt (104)

Equation 104indicates that the disk vibrates at the frequency nw,

which equals the excitation frequency w only for modes with n - I (one

nodal diameter). This unusual response is the result of using a moving

load. Such a load will pass 2n modal nodes in one trip around the disk

and will thus require only 1/n of the frequency of the stationary load

to excite the same mode. In plots of disk response , where this

peculiarity may cause confusion, the excitation frequency and response

frequency will be distinguished by subscripts.

Behavior 2f Node Points. Again a radial coordinate must be

specified to solve for a rotating node point. If this is done, the

response becomes

qorqf_(rq)f i(ro)
w(r 0 ,et - 212) sin sinn/.ft

+ qorq r2(rt 2  (r 0 o) (105)
k2 (1 -n w 2

which requires only one condition to form a rotating node point, and

that condition is as follows:
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qorf (r,)f (ro) qor.t 2 (r,)'(ro) (106)
2w 2 /wf 2  ( _n2W2iW2)

If this condition is satisfied, the response can be written as

,,(r,-.e, t) - q°rq ° ,(~ C,r)o
. _ 1 ./.( r) (sin nw tsin nO + cosnw tcosnO) (107)

or

q(), rqf .(r,)f 1(r,) (108)
w~rokO(t ~f2.2/.2) cosn(wt-0)

k, I - ' -'i c '  ° no I

which is a node point rotating in the positive 8 direction. On the

other hand, if

qorqf j(rq)f j(ro) qor~f 2(r.)f 2 (ro) (109)

k1(I -n 2w 2iw? k2 (1 -n 2 w 2/W2)2

the response would be

w(r 0 . t). qot r 10o _cosn(wt+G) (110)
t(1-2 w 2 /w2)

which is a node point rotating in the negative 0 direction. Thus, in

the undamped disk excited by a rotating load, both forward and backward

rotating node lines are theoretically possible.

The rotating node line angular speed is slightly different for the

rotating load case. Equations 108 and 110 indicate that the node line

angular speed is given by

dO (111)

dt
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Thus, the node line angular speed due to a rotating load is independent

of the number of nodal diameters in the mode. In fact, in the case of

the forward rotating node point, the node lines would rotate right along

with the load (df/dt - +w).

Equation 109 implies that the response of the two modes is equal

in amplitude but opposite in sign, rather than equal in amplitude and

equal in sign, as in equation 106. Equation 109 will normally be

satisfied somewhere in the middle of the split natural frequencies.

Equation 109 can be solved for this excitation frequency required to

excite a backward rotating node. The result

(A)brow - 2 w 2 ( ) ; ( )- - I(( 2 (112)

Equation 106, on the other hand, will normally only be satisfied

for excitation beyond the dual resonant frequency band, if at all.

Solving equation 106 for the excitation frequency needed to excite a

forward rotating node gives

W W2 i(rq)t,(ro)/m, Iwf2 (rq)f 2 (rO)1M 2 12
, n 2 (f 1(r)f (ro)/mI + f 2 (rf 2 (rO)M 2 )J (113)

The frequencies calculated using equation 113 may easily be too

high to obtain an accurate solution because the assumption of equation

35 (that the disk response can be approximated as the superposition of

the responses of the two mistuned modes) is invalid except at

frequencies near the natural frequencies of the two mistuned modes. For

this reason, a rotating node point would not be expected at this

frequency, and equation 113 should not be used to predict a rotating

node unless the modes of interest are known to dominate the response at
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the indicated frequency. There is no guarantee that equation 113 will

even yield a real frequency, since the response amplitudes do not have

s to cross-over at any frequency above the higher natural frequency. The

amplitudes can cross-over if the modal parameters and load coordinate rq

are right, as can be shown by altering the mistuning model or moving the

load. This will be demonstrated in example problems 5 and 6.

Ex~inp.I Problem . An example will help illustrate the

conditions needed to generate rotating node lines in the case of the

undamped disk with a rotating load. Consider using the same parameters

as in example #1 except for the coordinate of the load. Let rq - 0.13,

the outer radius (edge) instead of 0.05. Applying equation 112 yields

the required excitation frequency

W rt = 826.805 radians/sec

This frequency corresponds to the node point rotating backward in the

disk at the constant angular speed w (according to equation 111).

Equation 113, on the other hand, does not yield a real frequency. Thus,

for the stated parameters, the modal response amplitudes will never be

equal with the same phase. Figure 21 plots the response amplitudes of

the two modes in a frequency band where they might be expected to cross.

Although the modal response amplitudes are apparently never equal

at this radial coordinate, they may be equal at another coordinate for

some frequency. Review of equation 113 suggests that some alteration of

the modal masses, the coordinate of the load, or the coordinate of the

node point may lead to a real frequency; however, only the third option

does not involve a change in the configuration.
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Figure 21. Example Problem #5, Response Amplitudes
No Damping, r0 - 0.05, No Forward Rotating Node

Example Proble #6. Consider the same configuration as in

example #5, but now let r0 - 0.125. Application of equation 112 yields

the excitation frequency required for a backward rotating node

W bM f 826.8 1S radians/sec

This frequency is very close to that of example #5, which i; simply an

indication that the mistuning is small. Equation 113, however, now

gives a real excitation frequency. It is

W I/ =2,093.415 radians/sec
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This is the frequency required for the forward rotating node point in

the undamped disk subjected to a rotating load. Thus, the point

r. - 0.05 cannot rotate at the excitation frequency but the point

r 0 - 0.125 may. Figures 22 and 23 plot the modal response amplitudes

for the parameters of this example in two different frequency bands -

where equations 106 and 109 respectively are satisfied. The difference

between the modal response amplitudes is also plotted in figure 23

because the two amplitudes are too close to observe their crossing.
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Figure 22. Example Problem #6, Response Amplitudes
No Damping, r0 - 0. 125, Backward Rotating Node

These figures clearly show that the response amplitudes of the two

mistuned modes at the frequency required for the forward rotating node

point is too small for these modes to be considered dominant.

Therefore, a forward rotating node point would not really be expected at
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the indicated excitation frequency of 2,093.415 radians/sec. To be

certain of this, the other resonant frequencies of the disk would have

to be determined.
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Figure 23. Example Problem #6, Response Amplitudes

No Damping, r0 - 0.125, Forward Rotating Node (?)

The undamped disk has provided some interesting results in the

case of the rotating load; however, there is no such thing as an

undamped disk. The effects of damping on the previous results must be

addressed.

m Response. To determine the damped response due to a

rotating load, the damping is again added to the undamped disk equations

of motion. The resulting equations are solved for the modal responses,

and those responses are added by employing the expansion theorem. The

response will again be examined for the possibility of rotating node
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lines and the conditions needed to achieve them.

If viscous modal damping is again added to the differential

equations governing the response, a change in the rotating node point

requirements would be expected. This is in fact what happens, as will

be shown.

Adding viscous damping to equations 100 and 101 yields

()2 ) 2  qorw (114)

and

22t) 2, (t + W 2a 2(t )= q- r " / ( r . ) c o s n ~ t (1)
Mn2

For mode 1, a solution of the form

a,(t)- A1 sin(nwt-a) (116)

is assumed; whereas for mode 2, the assumed solution is

a 2 (t) - 2 cos(nW t-a 2) (117)

Determination 21 Resonse. Substituting equations 116 and

117 into the differential equations of motion (114 and 115) and solving

for the response at a specified radial coordinate gives _

w(r 0 ,O,t)- R,(w)cosaI(sinnwtsin nO)- sina,(cosnwtsin O)]

R 2(w)[cosa 2 (cosnwtcosn )+ sina 2 (sinnwtcosnO)] (118)

where RI(M) and Rz(w) are again the modal response amplitudes given now

by
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R ,(w) q or qf 1(rq)f I (ro)(19

k[ I -. n 2W2,W2) 2 +(2 nrw/w 1)2]2

and

qorqf 2 (rq)1 2 (ro) (120)

k2(I- n 2W2,W2)2 .(2 Rw/w)22
R2( )"

The phase angles are now given by

2n, w / , (121)
tan a, 2

1 -n2w 2/w1
2

Now, if

R I(w)cosa -R 2 (W)cosa2 = 0 (122)

and

R (w(6e)a-R 2 (W)sina 2 = 0 (123)

equation 118 can be written as

w(ro,O,t)=R,(w)cosacosn(wt-O)+R,(w)sina sinn(wt-e) (124)

or

w(r o O,t)= R 1 (w)sin(nwt- nO+ y) (125)

where

tan y= cota (126)
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Equation 125 is an expression of the forward rotating node point.

Notice that the backward rotating node point is no longer possible

because the modal responses cannot be equal in amplitude but opposite in

sign. Even though node point rotating backward at constant angular

speed is thus ruled out. it may still be possible to have a node line

rotating at an average angular speed of -w. The conditions required for

the forward rotating node point are very similar to the undamped case,

as will be shown.

Conditinj Reguizne foz & R a tLng KA Point. To obtain a

rotating node point in the case of the damped disk excited by a rotating

load requires that

[sna :?ia if~ ~ -1 (0 (127)

Setting the determinant equal to zero yields

-cosa Isina 2 + sina, cosa 2 - O- sin(a, -a 2 ) (128)

The only obvious solution to this equation is

a , a 2  (129)

because the phase angles usually range from 0 to x radians, being zero A
only for w - 0 and * only for w - Substituting this result back

into the first row of matrix equation 127 gives

R, (w) R 2(w) (130)
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Thus, for the damped disk excited by a rotating load, the conditions for

a rotating node point are that the response amplitudes be equal and the

phase angles be equal as well.

There may be other instances in which a node point rotating at

approximately the excitation frequency of the disk could occur. As

noted in the stationary load examples, approximate satisfaction of the

phase angle requirement may yield something like a rotating node line.

In this light, consider the case of light damping or large mistuning.

In such case, equation 129 may not be the only possible phase

requirement because it is possible that

a 1 -a 2  (131)

This may well be the more important solution, since equation 123 might

not be satisfied at a frequency where the mistuned modes are dominant.

As with the case of the stationary load, it is desirable to

determine what the rotating node point requirements are in terms of

modal damping values and excitation frequencies. These relations are

determined in the next two subsections.

Reguirement ouModal Damjing. To solve for the requirements

on modal fractions of critical damping, equation 121 is used to generate

the following identities:

n2W2/W2___22_____w, (1 -nwi' ) (132)
, sina, cosa,

Substituting this equation into the second row of equation 127 gives

qor~f 1(r.)JI (ro) sin 2 a,- q~rf 2 (rq)f 2 (r0 ) sn2a2=0(3)
k 1 (2 1nw/ 1 ) ' k 2 (2 2nw/w 2 ) S a-O (33)
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Then, application of equation 129 yields

0 I 1 2 (rq)1 2 (ro) (134)

kj(2Cjnw/wi) k 2(2C2 nw/w 2 )

Solving this equation for the fractions of critical damping yields

C2 f 12 (rq)1 2(ro)kI w 2  (135)
C, f I(rq)Ii1(ro)k2 W 1

which is apparently independent of the excitation frequency w.

n2n Frequencl. Substitution of equation 132 into

the first row of equation 127 rather than the second yields the

excitation frequency requirement for a rotating node point. It is

w [2/IA(r,)f z(ro)/rni + W 212(rq)/ 2(rO)/M 2 12 (136)

which is identical to equation 113 and is independent of the modal

damping values.

As in the case of the undamped disk, there is no guarantee that

this equation will yield a real frequency, since the response amplitudes

need not be equal in the frequency regime where it is possible for the

phase angles to be equal. An example problem will help to illustrate

these requirements.

SProble #7. Consider the same parameters as in

example #6. Applying equation 136 obviously yields the same frequency

as equation 115 did in example #6 because the equations are identical.

The excitation frequency is

W Ira = 2,093.415 radians/sec
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The addition of damping, however, introduces an additional requirement

* in the form of equation 135. Applying this equation yields

-- 0.9877

Li,1
To plot the response, one fraction of critical damping must be selected.

Therefore, let C,- 0.004, then C2" 0.00395 . The response amplitudes

and the difference between them are plotted in figure 24 in the

frequency band where the rotating node point requirements are met.
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Figure 24. Example Problem #7, Response Amplitudes
C- - 0.004, C2 - 0.00395; Forward Rotating Node (?)

68



It must be stressed that a rotating node point in this case is

quite unlikely due to the inaccuracy of equation 35 at this frequency.

A more interesting case may be one in which equation 131 is employed.

Such a condition is considered as a final example.

Exinle Proble. #. In example #4 it was shown that

rotating node lines could occur even if the phase requirement was not

met. The result was that the speed of the mode was not constant but had

an average speed equal to w/n . Similar results are expected in the

rotating load case. Consider the same parameters as in example #1

except for the torsional spring constant. Let K - 50.0 instead of 24.0.

This will introduce some additional mistuning so that equation 131 can

be invoked. The resulting mode shapes are plotted in figure 25.
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Figure 25. Example Problem #8, Mistuned Radial Mode Shapes
X - 50.0 ; a/b - 0.1 ; Mode: m - 0, n - 2

69



.;,

The modal fractions of critical damping will still have to be very

small to satisfy equation 131. The approach should be the same as that

used in example #4. That is, both modal damping values should be

specified, and the response amplitudes should be set equal for some

radial coordinate as follows: let j - 0.0010, 2 - 0.0011 and

r0 - 0.05 meters. Solving equations 130 and 121 yields the following

u excitation frequency and phase angles:

w=830.691 rad/sec a, = 3.03357 radians a 2 = 0.11897 radians

These conditions are suitable for equation 131.

The node line shape is plotted at its extremue curvature and

magnified 100 times in figure 26. The node line has more curvature in

this case, as expected, because of the stiffer torsional springs.
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Figure 26. Example Problem #8, Node Line Shape Magnified 100 Times

Mode: m - 0, n - 2 ; K - 50.0

As in example #4, the disk response may be plotted at various

times to determine whether or not it has the shape of the tuned mode

shape and hoe the displacement amplitude varies as the node line travels

around the disk. This is done in figures 27-29.
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Figure 27. Example Problem #8, Disk Response Vs. Theta
C-1.017 milliseconds; -0.001, -0.0011
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Figure 28. Example Problem #8, Disk Response Vs. Theta

b. C - 1.490 milliseconds; -0001, -00011
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Figure 29. Example Problem #8, Disk Response Vs. Theta
t - 2.435 milliseconds; j - 0.001, 2 - 0.0011

These figures show that the response does have the shape of the tuned

mode changing in amplitude as it rotates, just as the disk of example

#4.

Figure 30 plots the node line position vs. time. This figure

shows that the node line speed variations are mild compared to those of

example #4. Note also that this is a backward rotating node line, as

predicted for the undamped disk. Thus, the case of small damping is a

good approximation to the undamped case. If additional damping were

introduced, as in a more realistic case, the node line speed variations

could be kept minimal by increasing the amount of mistuning. This would

also further distort the node line shape, but it is obviously not

visibly distorted in figures 27-29.
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Figure 30. Example Problem #8, Node Line Position Vs. Time
*1 - 0.001, z - 0.0011; Mode: m - 0, n - 2

The rotating load yields results that are only slightly different

from those of the stationary load. Differences in the phase

requirements for a rotating node point result from the fact that the

rotating load excites the two modes out of phase. The modal phase

angles must differ by 0 or * with a rotating load. These phase angles

with respect to the load allow the two modes to respond r/2 radians

apart, which is the same relationship between the modal responses as

that required for a rotating node point in the case of a stationary

load. This, however, virtually eliminates the possibility of a forward

rotating node point in favor of the backward rotating node point. Also,

the magnitude of the angular speed of the rotating node lines is W

rather than 1/n, as in the case of the stationary load. All other

aspectz of the rotating load response are the same as those of the

stationary load.
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The rotating load is also a model for a disk rotating past a

stationary load. The reasons and impact of using this model ftr 2

U rotating disk are examined in the next chapter.

m ,
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V. Rotating Disk

The equation of motion of the rotating disk has not been solved in

closed form, but enough is known about it to estimate the forced

response with a fair degree of certainty. Proven estimates of the

natural frequencies abound in the literature (5:1143). The angular

dependences of the mode shapes are generally assumed to be sinusoidal.

This dependence must certainly be sinusoidal in the limit of small

rotation speeds, since it must converge to the stationary disk

eigenfunction in this limit. Making use of this assumption will allow a

development of the mistuned rotating disk forced response that is

directly parallel to that of the mistuned stationary disk. Because the

exact response cannot be determined, the response will be stated only in

a qualitative fashion.

Eguato of Motion
The equation of motion for the transverse vibration of a rotating

disk can be determined by the methods used in chapter II. Only the

additional terms due to the rotation need be derived here. For the

rotating disk, the kinetic energy of the vibrations and work done by a

point load are identical to those of the stationary disk. The kinetic

energy due to disk rotation is not considered because it is assumed to

be independent of the disk transverse velocity. The difference comes in

the potential energy of the disk. The additional potential energy due

to the rotation is

AU-+ ° h f ai' - +o, a - rdrdO (137)
2. L \r 7 rJO
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where the radial and angular stresses respectively due to a rotation

speed 0 are determined by applying the center-clamped boundary

conditions to the general stress equations given by Saada (10:336).

They are

a,- L-(3+v)r 2.C +C2 r] (138)

and

a._.. _,_(1 + 3-)r2+CI_ C/r (139)

where

b 4 (3+v)+a 4 (1 +3v)
a Il 2 +b 2

L and

a 2b 2 [b4(3+v)+a 4 (1 + 3v)]
C2  2 b2

USubstituting the energy term of equation 137 into Hamilton's Principal
and integrating by parts yields three additional terms for the equation

of motion and two additional terms for the boundary conditions. The

* complete equation of motion for the rotating disk is

D + Phn2 -(3+v)r 2 +C ,  - -
8 , C2 e-( 3 (woat2~r 2  Jr 2

3(3+v)r + + (140)r r = 34r r 2  r 4je

The boundary condition equations 6, 7, and 10 are unchanged. The

boundary condition equations 8 and 9 become
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[ [ (2 v )  3 w +(2v - 1) w l 3w  2(1 -v)dw1
r ar2 9 r 2  araO r 3 a03  r3  aOj

( I(+ 3d)r r rE 6w 0 (141)

82  r r3 1,30 106

and

8 aw (2-Y) a+W (v-3) 2 1 W

dr~dpha r2 E2dG b2

_3vr3Cr ____ .5 - (142)
8Lr r Or

The solution of equation 140 is unknown; however, early (4:276)

and recent (5:1143) researchers alike have assumed it is of the form

w(r,e,t) = a(t)/(r)sinnO (143)

which is the same as the form of the solution of the stationary disk

equation of motion. This is a fair assumption. Because the two

sclutions must converge in the limit of small rotation speeds, they are

bound to have distinct simiiarities. This assumption is more than is

necessary to make the mistuning model work for the rotating disk,

because the two mistuned modes will decouple as long as the integral of

the two e dependences from zero to 2* vanishes. Although the exact

natural frequencies and the radial dependences of the mode shapes are

unknown, the natural frequencies can be approximated. This thesis will

not treat these approximations, as the qualitative behavior of the disk

is the main focus here (see 5:1143 and 11:2010).

Rotating D Misuuinog

The assumption of equation 143 allows the rotating disk to be

mistuned in the same fashion as the stationary disk. In the case of the
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rotating disk, the foundation of the torsional springs must rotate with

the disk. Application of the torsional spring mistuning model again

results in two distinct self-adjoint eigenvalue problems and two

distinct orthogonal modes (sine and cosine modes). The eigenvalues

cannot be solved for in closed form, but the forced response of the disk

can still be determined qualitatively.

Resonse =o I Stationary Point Loa

Once subjected to the assumption of equation 143, the forced

response of the rotating disk to a stationary point load is exactly

parallel to that of the stationary disk to a rotating load. Thus, all

of the equations and concepts of the chapter IV rotating load section

are applicable to the rotating disk. The only major difference between

the two responses is that the rotating disk modal parameters are all

functions of the disk rotation speed and they cannot be solved for in

closed form.

The differential equations of motion for the rotating disk are

precisely equations 114 and 115 except that the modal masses,

stiffnesses, and natural frequencies are now unknown functions of the

disk rotation speed. These equations are obtained by assuming that the

response can be approximated by the response of only the two mistuned

modes, as in equation 35 (recall that this assumption is valid for the

self-adjoint system providing there are no other resonant frequencies

close to the mistuned modes being studied). Equation 35 is substituted

into the equation of motion (eq. 140), and the resulting equation is

multiplied through by each mistuned mode. The two equations resulting

from this multiplication are then integrated over the domain of the disk

to yield two indeiendent equations. The modal damping is then added to

these equations to yield the form in equations 114 and 115. Once the

parameters in these equations are determined the remaining equations of

chapter IV are applicable with the load rotation speed 0 replaced by the
disk rotation speed w.
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The rotating disk response to a stationary load has all of the

features of the stationary disk response to a rotating load. For light

damping and significant mistuning, node lines rotating backward through

the disk would be observed when the modal response amplitudes are equal.

The node lines of such a response would not be able to move through the

disk at the constant angular speed 0 but would instead move faster and

then slower with an average angular speed 0. Node lines rotating

forward (stationary in the non-rotating reference frame) in the disk

could only be observed if the mistuned modes were the dominant modes at

the frequency where 0, - a2, which is highly unlikely since this

frequency is generally much higher than the natural frequencies of the

mistuned modes.

The response of the rotating mistuned disk as given here in

qualitative form provides the designer with a reasonable understanding

of the resonant behavior of such a disk. Only the stationary point load

has been addressed, and bladed disks have not been addressed; however,

this thesis should be useful as a qualitative tool.
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VI. Results And Discussion

Mitnn odl

The mistuning model used in this thesis was contrived with

mathematical simplicity as a primary criterion; however, it is fairly

flexible and allows for the de-coupling of the modal equations of

motion. In addition, the model can be tuned to decrease the

imperfection and its effects until they are arbitrarily small, which is

a property one would expect a real disk to have.

In most cases, the cause of mistuning in a given disk is unknown;

therefore, no mistuning model is assured of being correct. It is also

unclear as to how different mistuning models affect the modal responses;

however, it is possible to imagine two models that would have profoundly

different effects on the mathematical form of the response. For

example, consider a model using point masses instead of the springs used

in the present model. Such a model would not be self-adjoint, and,

Ptherefore, the mode shapes would become series of the eigenfunctions in
the point mass system. The disk response in the neighborhood of a

resonance; however, may still be similar to the response of the current

p model, since a single mode will dominate the others near its resonant

frequency. For this reason, many reasonable mistuning models may yield

a similar response in the neighborhood of a resonance. If this is true,

then the main difference among various models may be the complexity of

the mathematical behavior. Although the model used in this thesis does

not have a form one might expect in a real disk, it may represent the

real disk as well as the next model, and it has the added benefit of

simplicity.

The flexibility of the model is due to the use of variable-stiff-

ness springs. Springs at the outer edge allow the amount of mistuning

to be varied over a wide range, although the mode shapes will differ

greatly with a large spring stiffness. A well manufactured disk,
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however, would not have enough mistuning to require such a large spring

stiffness in the model.

The model is unique in that it ensures orthogonality between the

mistuned modes. Because the springs are placed at the nodes a given

mode, they are not felt by the Oun-sprung" mode. On the other hand,

since the boundary condition is specified as free at the nodes of the

"sprung* mode, the *sprung" mode cannot feel the free boundary

condition. Note that self-adjointedness of the eigenvalue problem is

not required to de-couple the differential equations of motion but is

needed to ensure that an individual eigenfunction can respond

independently of the other eigenfunctions. Thus, the placement of the

imperfections (springs) is what helps this model work.

Stationa Disk Resvonse

The response of the stationary mistuned disk will usually have

rotating node lines in the neighborhood of a resonance and can have the

approximate shape of the tuned mode shape under more precise conditions.

It was found that, as long as both mistuned modes are not in phase with

each other, the node lines of the disk must move. They must move from

the node lines of one mode to the node lines of the other, which are at

the lines of peak displacement of the first, and they must do so twice

per cycle of excitation. This is true whether the applied load is a

stationary oscillating point load or a rotating point load. If the two

modal response amplitudes are equal, the disk will take on the shape of

a single tuned mode shape rotating around the disk; however, the

amplitude of this disk shape will not, in general, remain constant in

time. Only if the two modes respond exactly 90 degrees out of phase

will the rotating disk shape amplitude be constant in time. In

addition, the node lines will move at the constant speed dO/dt= ±i/n or

±w (corresponding to the stationary and rotating load cases

respectively) only if both of the rotating node point requirements

(equal response amplitudes and 90 degree phase shift) are met.
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In general, both of the rotating node point requirements cannot be

satisfied simultaneously for all radial coordinates of the disk, but, if

the mistuning is small and one coordinate r0 satisfies the requirements,

the remaining coordinates will almost satisfy the requirements. In such

case, the node line will distort very slightly as it travels around the

disk, first bending one way and then the other. At times when one mode

* is at zero response, the node line will be straight. As the node line

moves from this time, it will bend according to the difference in the

response amplitudes at a given radial coordinate. This bending will

increase to a maximum when the node line reaches a point between the two

node lines of the mistuned modes, then it will decrease to zero as it

approaches the node line of the other mode. On passing the mode node

line, it will begin to bend again.

The rotating node point requirements as stated in the previous

paragraph are obviously the same for both stationary and rotating point

loads, but the two load types-have differences in their phase shift

*capabilities. The phase shift between the two modes is always 90

degrees. However, if the phase angles between the load and the

responses are considered, the requirements appear to be different. This

is because the rotating load automatically excites the modes out of

j •phase; therefore, for the rotating load, an equal phase shift of each

mode with respect to the load causes a 90 degree phase shift between the

two modes. The difference in the phase shift capabilities of the two

load types results in node lines that rotate in different directions.

Whereas both forward and backward rotating node lines are theoretically

possible with both rotating and stationary loads, only the backward

rotating node line is likely to occur with a rotating load

(corresponding to phase differences between the modal responses of plus

and minus 90 degrees). The forward rotating node line is unlikely with

a rotating load because the excitation frequency needed to obtain the

proper phase shift is usually too far away from the resonance.
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Rain Djjk R~~os
The disk rotating past a stationary point load was found to

i respond much like the stationary disk with a rotating load, if its mode

shape is assumed to vary sinusoidally with 0. The solution of the

rotating disk equation of motion is currently unknown. Therefore, some

assumption about its form must be assumed. The assumption that the 0

M dependence is sinusoidal has been made by most previous investigators

and seems reasonable because it converges nicely to the stationary disk

solution in the limit of zero disk rotation speed. Using this

assumption allows a qualitative determination of the rotating disk

forced response. The same mistuning model is used to mistune the

rotating disk, except that the torsional spring foundation must move

with the disk. Once the modal parameters mi, ki, and w, are determined,

the response of the disk rotating past a stationary load can be found

using the stationary disk rotating load equations. The modal parameters

as well as the radial variation of the mode shape cannot be determined

3 in closed form, but approximate methods of evaluating the natural

frequencies have been published (5:1143, 11:2010). Thus, at least a

qualitative understanding of the rotating disk response is immediately

available.
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VII. Conclusions

I. By the use of a new model for the forced response of a mistuned

disk, it was shown that a mistuned disk may respond with rotating node

lines much like the the response postulated by Tobias and Arnold for the

perfect disk. A model was devised to mistune the disk without coupling

the eigenfunctions into infinite series of Bessel functions. Then the

forced response of the stationary disk to both rotating point loads ard

stationary point loads oscillating in time was determined and found to

have rotating node lines under certain conditions. The disk rotating

past a stationary load was also considered and found to have a response

similar to the stationary disk excited by a rotating load.

The new mistuning model was contrived to prevent the mistuned

eigenfunctions from coupling between orders of the Bessel functions. It

uses torsional springs placed along the outer boundary of a

center-clamped annular disk. One spring is placed at diametrical node

of a given mode. The boundary conditions split the mode into two modes

that are orthogonal to each other and to all other modes. For the

stationary disk, the modes are each fully determined by four

coefficients of Bessel functions and Modified Bessel functions of the

first and second kinds all of the same order.

The disk response to a point load can take the form of rotating

node lines and, under certain conditions, may even take the shape of the

tuned mode shape rotating through the disk. The node lines must rotate

through the disk as long as the two modes respond out of phase with each

other. If the response amplitudes are equal, the response will look

like a tuned mode shape rotating through the disk. If, in addition, the

modes are responding 90 degrees out of phase, the amplitude of the disk

shape will be constant in time and the node line angular speed will be

precisely ±w/n or ±w (corresponding to the stationary and rotating load

cases respectively). To meet this last condition, the modal damping
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must meet stringent requirements. These results are also applicable to

the disk rotating past a stationary point load if the rotating disk

I eigenfunctions are assumed to have a sinusoidal 9 dependence. This

assumption was made because the rotating disk equation of motion has not

been solved.
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